
Security
Processes

Defining Security policies for GNU
Toolchain Projects

Siddhesh Poyarekar

The What, Why, How, etc.
● What are security issues?
● Why are toolchain projects special for security issues?
● Security policy for GNU toolchain projects
● Progress and next steps

WHOAMI Now?
● Hacks on the GNU toolchain
● Argues with security researchers and CNAs on CVE assignments
● Works on Toolchain Security at Red Hat

Why are we talking about this?
● The great binutils fuzzing epidemic is starting to spread

○ Fuzzing is great, but what happens after is not

● The CVE system is broken
○ Ask and you get CVE ids, no questions asked
○ Underscore rules about software usage that get thrown out in pursuit of eyeballs

● Efforts get misdirected
○ Engineers waste time spinning backports and builds
○ Engineers waste more time trying to dispute claims

● Clearer security focus
○ Build on the frustration to build a better security posture for projects

What is a security issue anyway?
● A bug in software that allows users to do something on the computer

running the software, that they otherwise wouldn’t have been able to do.
● Not all security issues are equal

○ Vulnerabilities, i.e. direct compromise of availability, integrity or confidentiality
○ Missed hardening, i.e. limitations of security features
○ Flawed designs that allow commoditization of vulnerabilities

● How security issues are dealt with:
○ Vulnerabilities get CVE ids
○ Missed hardening and flawed designs get hand-wringing and occasional calls to action

■ They sometimes get CVE ids from overzealous reporters and CNAS which result in
additional hand-wringing

Use Context matters
● Users interact with software through interfaces

○ Remote, via application UI (websites, web applications, etc.)
○ Locally, via user shell
○ A library API (here be context dependent dragons!)

● The context in which a bug could manifest itself matters
○ Context for a bug == scenarios in which a bug could plausibly be triggered
○ Possible != plausible

● Context defines which part of software is insecure
○ If an application uses a known insecure interface, the application needs to be fixed
○ If an interface is expected to be secure but isn’t, then it needs to be fixed.

● A coir rope breaking is a bug, not a security issue
○ If it was used for, e.g. bungee jumping, the security problem is not the strength of the

rope!

Security policies: setting secure use context for projects
● Define usage models for the project

○ Threat models would derive from usage models

● Define expectations of safety from different components in the project
○ One wouldn’t use a coir rope for bungee jumping

● Outline procedures to handle issues with security
● Identify contact points for security researchers

Context: GNU toolchain projects
● Not all GNU toolchain projects operate under the same context
● Not all parts of GNU toolchain projects provide safety in all contexts
● Not all programming languages provide safety to protect against arbitrary

inputs

Context: runtime libraries
● Florian Weimer outlined the glibc context:

○ Security Process and Security Exceptions documents that later became
$topsrcdir/SECURITY.md

● Language runtime libraries need to provide the highest usage standard
(relatively speaking)

○ Even then, many limitations will apply
○ Standard definitions may put the onus on application developers vs runtime libraries
○ Libraries may warn users about safety concerns of some interfaces.

● Not every DSO is a runtime library
○ A security policy should identify runtime libraries
○ Others are just there to provide modularity, not implement a general purpose runtime.

Context: Analysis tools
● Analysis tools necessarily need to be robust on arbitrary input programs

○ Better error checking

● But analysis of arbitrary input programs MUST be in a sandbox
○ Providing sandboxing features in analysis tools is a noble goal
○ Aiming for the holy grail of allowing users to analyze arbitrary programs without

sandboxing is naive and dangerous.

Context: language compilers
● Compilers can produce an output for *any* valid-ish input
● Validation limited to syntactical correctness and semantic correctness for

a language
○ Safety becomes a function of the language specification

● Subjecting the compiler to arbitrary input
○ Expectation of robustness is valid
○ Expectation of maintenance of system integrity is naive

● Always sandbox when compiling arbitrary inputs
○ Compiler Explorer does it, so should you

GNU Toolchain: What could we do?
● Define a security policy

○ Researchers look for a SECURITY.*

● Play a more active role in vulnerability triage
○ CVE Numbering Authorities (CNAs) analyze vulnerabilities and assign numbers
○ Present state of triage is dismal

● Prioritize non-vulnerability security issues
○ Better diagnostics
○ Improve hardening and mitigation

GNU Toolchain: What is done and what is needed
● glibc has had a security policy for ages (Thanks Florian!)

○ Security process and exceptions wiki pages, later made into a SECURITY.md

● Binutils picked one up
○ Allowed Red Hat as CNA to somewhat stem the flow of spurious CVE assignments

● gdb
○ Is there interest?

● GCC security policy is WIP
● A glibc CNA is WIP

○ Are you a glibc contributor and have experience triaging security issues? We need you!

Thank you! Questions?

siddhesh@gotplt.org

mailto:siddhesh@gotplt.org

