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The What, Why, How, etc.

What are security issues?

Why are toolchain projects special for security issues?
Security policy for GNU toolchain projects

Progress and next steps



WHOAMI Now?

e Hacks on the GNU toolchain
e Argues with security researchers and CNAs on CVE assignments
e Works on Toolchain Security at Red Hat



Why are we talking about this?

e The great binutils fuzzing epidemic is starting to spread
o Fuzzing is great, but what happens after is not
e The CVE system is broken
o Ask and you get CVE ids, no questions asked
o Underscore rules about software usage that get thrown out in pursuit of eyeballs
e Efforts get misdirected
o Engineers waste time spinning backports and builds
o Engineers waste more time trying to dispute claims
e C(learer security focus
o Build on the frustration to build a better security posture for projects



What is a security issue anyway?

e A bugin software that allows users to do something on the computer

running the software, that they otherwise wouldn’t have been able to do.
e Not all security issues are equal

o Vulnerabilities, i.e. direct compromise of availability, integrity or confidentiality

Missed hardening, i.e. limitations of security features
Flawed designs that allow commoditization of vulnerabilities
e How security issues are dealt with:

o Vulnerabilities get CVE ids

(@)

(@)

(@)

Missed hardening and flawed designs get hand-wringing and occasional calls to action

m  They sometimes get CVE ids from overzealous reporters and CNAS which result in
additional hand-wringing



Use Context matters

e Users interact with software through interfaces
o Remote, via application Ul (websites, web applications, etc.)
o Locally, via user shell
o Alibrary API (here be context dependent dragons!)
e The context in which a bug could manifest itself matters
o Context for a bug == scenarios in which a bug could plausibly be triggered
o Possible != plausible
e Context defines which part of software is insecure
o If an application uses a known insecure interface, the application needs to be fixed
o If aninterface is expected to be secure but isn't, then it needs to be fixed.
e A coir rope breaking is a bug, not a security issue
o Ifitwas used for, e.g. bungee jumping, the security problem is not the strength of the
rope!



Security policies: setting secure use context for projects

e Define usage models for the project
o Threat models would derive from usage models

e Define expectations of safety from different components in the project
o One wouldn't use a coir rope for bungee jumping

e Qutline procedures to handle issues with security
e |dentify contact points for security researchers



Context: GNU toolchain projects

e Not all GNU toolchain projects operate under the same context

e Not all parts of GNU toolchain projects provide safety in all contexts

e Not all programming languages provide safety to protect against arbitrary
inputs



Context: runtime libraries

e Florian Weimer outlined the glibc context:
o  Security Process and Security Exceptions documents that later became
$topsrcdir/SECURITY.md

e Language runtime libraries need to provide the highest usage standard

(relatively speaking)
o Even then, many limitations will apply
o Standard definitions may put the onus on application developers vs runtime libraries
o Libraries may warn users about safety concerns of some interfaces.
e Notevery DSO is a runtime library

o Asecurity policy should identify runtime libraries
o Others are just there to provide modularity, not implement a general purpose runtime.



Context: Analysis tools

e Analysis tools necessarily need to be robust on arbitrary input programs
o Better error checking
e But analysis of arbitrary input programs MUST be in a sandbox

o Providing sandboxing features in analysis tools is a noble goal
o Aiming for the holy grail of allowing users to analyze arbitrary programs without
sandboxing is naive and dangerous.



Context: language compilers

e Compilers can produce an output for *any* valid-ish input
e Validation limited to syntactical correctness and semantic correctness for
a language
o Safety becomes a function of the language specification

e Subjecting the compiler to arbitrary input

o Expectation of robustness is valid
o Expectation of maintenance of system integrity is naive

e Always sandbox when compiling arbitrary inputs
o Compiler Explorer does it, so should you



GNU Toolchain: What could we do?

e Define a security policy
o Researchers look for a SECURITY.*

e Play a more active role in vulnerability triage
o CVE Numbering Authorities (CNAs) analyze vulnerabilities and assign numbers
o Present state of triage is dismal

e Prioritize non-vulnerability security issues

o Better diagnostics
o Improve hardening and mitigation



GNU Toolchain: What is done and what is needed

e glibc has had a security policy for ages (Thanks Florian!)
o  Security process and exceptions wiki pages, later made into a SECURITY.md

e Binutils picked one up
o Allowed Red Hat as CNA to somewhat stem the flow of spurious CVE assignments

e gdb

o Isthereinterest?
e GCC security policy is WIP
e Aglibc CNAis WIP

o Areyou a glibc contributor and have experience triaging security issues? We need you!



Thank you! Questions?

siddhesh@gotplt.org
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