Security
Processes

Defining Security policies for GNU
Toolchain Projects

Siddhesh Poyarekar

The What, Why, How, etc.

What are security issues?

Why are toolchain projects special for security issues?
Security policy for GNU toolchain projects

Progress and next steps

WHOAMI Now?

e Hacks on the GNU toolchain
e Argues with security researchers and CNAs on CVE assignments
e Works on Toolchain Security at Red Hat

Why are we talking about this?

e The great binutils fuzzing epidemic is starting to spread
o Fuzzing is great, but what happens after is not
e The CVE system is broken
o Ask and you get CVE ids, no questions asked
o Underscore rules about software usage that get thrown out in pursuit of eyeballs
e Efforts get misdirected
o Engineers waste time spinning backports and builds
o Engineers waste more time trying to dispute claims
e C(learer security focus
o Build on the frustration to build a better security posture for projects

What is a security issue anyway?

e A bugin software that allows users to do something on the computer

running the software, that they otherwise wouldn’t have been able to do.
e Not all security issues are equal

o Vulnerabilities, i.e. direct compromise of availability, integrity or confidentiality

Missed hardening, i.e. limitations of security features
Flawed designs that allow commoditization of vulnerabilities
e How security issues are dealt with:

o Vulnerabilities get CVE ids

(@)

(@)

(@)

Missed hardening and flawed designs get hand-wringing and occasional calls to action

m They sometimes get CVE ids from overzealous reporters and CNAS which result in
additional hand-wringing

Use Context matters

e Users interact with software through interfaces
o Remote, via application Ul (websites, web applications, etc.)
o Locally, via user shell
o Alibrary API (here be context dependent dragons!)
e The context in which a bug could manifest itself matters
o Context for a bug == scenarios in which a bug could plausibly be triggered
o Possible != plausible
e Context defines which part of software is insecure
o If an application uses a known insecure interface, the application needs to be fixed
o If aninterface is expected to be secure but isn't, then it needs to be fixed.
e A coir rope breaking is a bug, not a security issue
o Ifitwas used for, e.g. bungee jumping, the security problem is not the strength of the
rope!

Security policies: setting secure use context for projects

e Define usage models for the project
o Threat models would derive from usage models

e Define expectations of safety from different components in the project
o One wouldn't use a coir rope for bungee jumping

e Qutline procedures to handle issues with security
e |dentify contact points for security researchers

Context: GNU toolchain projects

e Not all GNU toolchain projects operate under the same context

e Not all parts of GNU toolchain projects provide safety in all contexts

e Not all programming languages provide safety to protect against arbitrary
inputs

Context: runtime libraries

e Florian Weimer outlined the glibc context:
o Security Process and Security Exceptions documents that later became
$topsrcdir/SECURITY.md

e Language runtime libraries need to provide the highest usage standard

(relatively speaking)
o Even then, many limitations will apply
o Standard definitions may put the onus on application developers vs runtime libraries
o Libraries may warn users about safety concerns of some interfaces.
e Notevery DSO is a runtime library

o Asecurity policy should identify runtime libraries
o Others are just there to provide modularity, not implement a general purpose runtime.

Context: Analysis tools

e Analysis tools necessarily need to be robust on arbitrary input programs
o Better error checking
e But analysis of arbitrary input programs MUST be in a sandbox

o Providing sandboxing features in analysis tools is a noble goal
o Aiming for the holy grail of allowing users to analyze arbitrary programs without
sandboxing is naive and dangerous.

Context: language compilers

e Compilers can produce an output for *any* valid-ish input
e Validation limited to syntactical correctness and semantic correctness for
a language
o Safety becomes a function of the language specification

e Subjecting the compiler to arbitrary input

o Expectation of robustness is valid
o Expectation of maintenance of system integrity is naive

e Always sandbox when compiling arbitrary inputs
o Compiler Explorer does it, so should you

GNU Toolchain: What could we do?

e Define a security policy
o Researchers look for a SECURITY.*

e Play a more active role in vulnerability triage
o CVE Numbering Authorities (CNAs) analyze vulnerabilities and assign numbers
o Present state of triage is dismal

e Prioritize non-vulnerability security issues

o Better diagnostics
o Improve hardening and mitigation

GNU Toolchain: What is done and what is needed

e glibc has had a security policy for ages (Thanks Florian!)
o Security process and exceptions wiki pages, later made into a SECURITY.md

e Binutils picked one up
o Allowed Red Hat as CNA to somewhat stem the flow of spurious CVE assignments

e gdb

o Isthereinterest?
e GCC security policy is WIP
e Aglibc CNAis WIP

o Areyou a glibc contributor and have experience triaging security issues? We need you!

Thank you! Questions?

siddhesh@gotplt.org

mailto:siddhesh@gotplt.org

