
Gcc under the hood
Siddhesh Poyarekar

The Next Hour
● The journey from source to binary

○ Understand how your source code goes through gcc, as and finally ld
● Digging deeper

○ We explore how intermediate code generated during compilation can help us
understand our program. And the compiler.

● Hacking
○ We look at some use cases for enhancing the compiler

I...
● Am Toolchain Tech Lead at Linaro Developer Services

○ We provide professional toolchain services for the Arm ecosystem
● Maintain the GNU C Library
● Contribute to GCC/binutils
● Hack on LuaJIT

From Source to Binary

The 30 second view of a toolchain

Read Program Code

Optimize Program Logic

Generate Assembly Code

Generate Binary Code

Link

What this means for us

Read Program Code

Optimize Program Logic

Generate Assembly Code

Generate Binary Code

Link

#include <stdio.h>
int main ()
{
 printf (“Hell Oh World!\n”);
 return 0;
}

 gcc

 gas

 ld
$ Hell Oh World!

The 60 second view of the compiler

Intermediate
Representation!

Read Program Code

Optimize Program Logic

Generate Assembly Code

The front end:
A dozen or so
programming
languages!

The middle end:
A few

HUNDRED
optimization

passes!

The back end:
Translate code

into the machine
instructions.

The 90 second view

Read Program Code

Optimize Program Logic

Generate Assembly Code

gcc/c-family/*
gc/cp/*

gcc/fortran/*
...

gcc/passes.def
gcc/tree-*

...

gcc/config/<arch>/*

GIMPLE
RTL

The 120 second view

Read Program Code

Optimize Program Logic

Generate Assembly Code

The front end:
A dozen or so
programming
languages!

The middle end:
A few

HUNDRED
optimization

passes!

The back end:
Translate code

into the machine
instructions.

gcc/config/<arch>/*.md

GIMPLE
RTL

gcc/config/<arch>/*.c

Digging Deeper

Intermediate Representations
● GENERIC

○ Tree structure representation of a function
○ Interface between the parser and optimiser

● GIMPLE
○ Three address, machine and language independent format
○ Lowered from GENERIC
○ More restrictive than GENERIC

● RTL
○ Lowest Intermediate representation
○ Sequential instruction descriptions lowered from GIMPLE
○ Expressed as Lisp-like S-expressions

GENERIC
● Tree structure with connected

tree_nodes (gcc/tree-core.h)
● Everything based on the

tree_base struct
○ Look for struct GTY(()) tree_base

struct GTY(())
tree_<specialization> {
 struct tree<type it is
based on>;
 <The contents of the tree>;
};

e.g.

struct GTY(()) tree_string {
 struct tree_typed typed;
 int length;
 char str[1];
};

GIMPLE
● The optimizer workhorse
● Linear statements with no more than 3 operands in most cases
● Tuples defined in gcc/gimple.def
● Control flow described by the Control Flow Graph (CFG)

Control Flow Graphs
● Overlays on GIMPLE and RTL
● Graph that connects basic blocks (BB) of sequential code

○ Each BB may have one or more GIMPLE tuples

● Edges describe flow of control from one BB to another
● See gcc/cfg.* for more details
● Loops get special treatment

○ See gcc/cfgloop.h for details

GIMPLE Single Static Assignment (SSA)
● Variables are assigned in exactly one location
● Multiple assignments result in multiple copies of the variable

x = 10; x += 20;

Becomes
x_1 = 10; x_2 = x_1 + 20;

● Conditional assignments result in mysterious entities called PHI nodes
if (n > 10) x = 10;

else x = 20;

return x;

Becomes
if (n > 10) x_1 = 10;

else x_2 = 20;

x_3 = PHI<x_1, x_2>;

return x_3;

Register Transfer Language (RTL)
● Low level representation intended to map directly to one or more instructions
● Internal structure form as well as a textual form made of Lisp-like

S-expressions
● RTL expressions are listed in rtl.def
● Textual form used to write a machine description

Machine Description
● We want assembly in the end
● *.md files with RTL instruction descriptions

○ A gcc preprocessing tool parses it and generates code
● An RTL instruction may expand into one or more machine instructions
● One machine description file per architecture

Extending the Machine Description
● Additional sources per architecture to make more intelligent decisions about

generated code
● Source files in config/<arch>/*.c

Optimisation Passes
● Tree Level Optimisers

○ Static data flow analysis on tree IR (GIMPLE)
○ Machine Independent
○ E.g. DCE, CSE, IV optimisation, vectorisation

● RTL Optimisers
○ Static analysis on sequential IR
○ Machine dependent
○ E.g. register allocation, instruction scheduling, etc.

● Plug Your Own Optimiser
○ Add to passes.def

Peeking and Poking

Studying Intermediate Outputs
● -fdump-tree-* options to study GIMPLE IR outputs for every pass
● -fdump-rtl-* options to study RTL IR outputs for every pass

Squeezing the last drop
● Microarchitecture descriptions
● Machine descriptions with pipeline information
● Used by the instruction scheduler pass to select or reorder instructions
● Per-cpu cost tables

○ Loop alignment
○ Function alignment
○ Costs of operations (e.g. unaligned access)

Thank you
Join Linaro to accelerate deployment of your
Arm-based solutions through collaboration

contactus@linaro.org

mailto:contactus@linaro.org

