Gcce under the hood =

Siddhesh Poyarekar | connect

San Diego 2019

The Next Hour

e The journey from source to binary
o Understand how your source code goes through gcc, as and finally |d
e Digging deeper
o We explore how intermediate code generated during compilation can help us
understand our program. And the compiler.
e Hacking

o We look at some use cases for enhancing the compiler

Linaro
')) connect

¥ san Diego 2019

Am Toolchain Tech Lead at Linaro Developer Services
o We provide professional toolchain services for the Arm ecosystem

Maintain the GNU C Library
Contribute to GCC/binutils
Hack on Lua]IT

% —~\ Linaro
@}) connect
N\ 52 Diego 2019

From Source to Binary

Linaro
‘ @ connect
San Diego 2019

The 30 second view of a toolchain

-

Read Program Code

v

Optimize Program Logic
v

Generate Assembly Code
v

Generate Binary Code
v
Link

Linaro
< @ connect
San Diego 2019

What this means for us

T * 7
Read Program Code
v

Optimize Program Logic gcc
v
\ Generate Assembly Code

=

Generate Binary Code N gas
v

y "=\ Linaro
©)) connect
¢ S Diego 2019

The 60 second view of the compiler

The middle end:
Afew
HUNDRED
optimization
passes!

l

The front end:
A dozen or so
programming
languages!

Read Program Code

y

Optimize Program Logic

Intermediate
Representation!

y

Generate Assembly Code

The back end:
Translate code

into the machine
instructions.

Linaro
')) connect

¥ san Diego 2019

The 90 second view

gcc/passes.def
gccltree-*

l

Read Program Code

A4

Optimize Program Logic

A4

Generate Assembly Code

gcc/c-family/*
gclcpl*
gcc/fortran/*

gcc/config/<arch>/*

Linaro
connect
San Diego 2019

The front end:
A dozen or so
programming
languages!

The 120 second view

l

Read Program Code

The middle end:
Afew
HUNDRED
optimization
passes!

y

Optimize Program Logic

y

The back end:
Translate code
into the machine
instructions.

Generate Assembly Code

gcc/config/<arch>/*.c
gcc/config/<arch>/*.md >

Linaro
connect

San Diego 2019

Digging Deeper

Linaro
‘ @ connect
San Diego 2019

Intermediate Representations
e GENERIC

o Tree structure representation of a function
o Interface between the parser and optimiser

e GIMPLE
o Three address, machine and language independent format
o Lowered from GENERIC
o More restrictive than GENERIC

e RTL

o Lowest Intermediate representation
o Sequential instruction descriptions lowered from GIMPLE
o Expressed as Lisp-like S-expressions

Linaro
< @ connect
San Diego 2019

GENERIC

® T[ree structure with connected
struct GTY (())

free <specialization> | tree nodes (gcc/tree-core.h)

struct tree<type it is e FEverything based on the
based on>;

<The contents of the tree>; tree_base struct
o Look for struct GTY(()) tree_base

struct GTY(()) tree string {
struct tree typed typed;
int length;
char str[l];

b

Linaro
connect

San Diego 2019

GIMPLE

The optimizer workhorse

Linear statements with no more than 3 operands in most cases
Tuples defined in gcc/gimple.def

Control flow described by the Control Flow Graph (CFG)

Linaro
< @ connect
San Diego 2019

Control Flow Graphs

Overlays on GIMPLE and RTL

Graph that connects basic blocks (BB) of sequential code
o Each BB may have one or more GIMPLE tuples

Edges describe flow of control from one BB to another
See gcc/cfg.* for more details

® Loops get special treatment
o See gcc/cfgloop.h for details

Linaro
< @ connect
San Diego 2019

GIMPLE Single Static Assignment (SSA)

e Variables are assigned in exactly one location
e Multiple assignments result in multiple copies of the variable
x = 10; x += 20;
Becomes
x 1 =10; x 2 = x 1 + 20;
e Conditional assignments result in mysterious entities called PHI nodes
if (n > 10) x = 10;
else x = 20;
return x;
Becomes
if (n > 10) x 1 = 10;
else x 2 = 20;
x 3 = PHI<x 1, x 2>;
return x 3;
(&) cBfect

Register Transfer Language (RTL)

Low level representation intended to map directly to one or more instructions
Internal structure form as well as a textual form made of Lisp-like
S-expressions

RTL expressions are listed in rtl.def

Textual form used to write a machine description

Linaro
< @ connect
San Diego 2019

Machine Description

We want assembly in the end
*.md files with RTL instruction descriptions
o A gcc preprocessing tool parses it and generates code
An RTL instruction may expand into one or more machine instructions
One machine description file per architecture

Linaro
< @ connect
San Diego 2019

Extending the Machine Description

e Additional sources per architecture to make more intelligent decisions about
generated code
e Source files in config/<arch>/*.c

Linaro
< @ connect
San Diego 2019

Optimisation Passes

e Tree Level Optimisers

o Static data flow analysis on tree IR (GIMPLE)

o Machine Independent

o E.g.DCE, CSE, IV optimisation, vectorisation
e RTL Optimisers

o Static analysis on sequential IR

o Machine dependent

o E.g.register allocation, instruction scheduling, etc.
e Plug Your Own Optimiser

o Add to passes.def

Linaro
< @ connect
San Diego 2019

Peeking and Poking

Linaro
‘ @ connect
San Diego 2019

Studying Intermediate Outputs

e -fdump-tree-* options to study GIMPLE IR outputs for every pass
e -fdump-rtl-* options to study RTL IR outputs for every pass

Linaro
< @ connect
San Diego 2019

Squeezing the last drop

Microarchitecture descriptions
Machine descriptions with pipeline information
Used by the instruction scheduler pass to select or reorder instructions

Per-cpu cost tables
o Loop alignment
o Function alignment
o Costs of operations (e.g. unaligned access)

Linaro
< @ connect
San Diego 2019

0

Thank you = ©

- g—— Linaro
Join Linaro to accelerate deployment of your ey ol S C?I;]nggt
Arm-based solutions through collaboration 7] o

contactus@linaro.org

mailto:contactus@linaro.org

