-mcpu

A Journey to the Last cycle of Performance

Siddhesh Poyarekar

What are we doing here?

Appreciate CPU architecture

Really Appreciate what goes into CPUs
How compilers deal with the CPU

Plug my other talks!

Who am I?

e | hack on gcc and glibc

e |lead ateam that hacks on gcc and glibc...
o ...and does microarchitecture optimizations

e | work at Linaro

Von Neumann redux

INPUT

CPU

CONTROL UNIT

int main (void)
{

return 0

}

INTEGER UNIT

OUTPUT

FLOATING POINT UNIT

/tmp/foo.c: In function
‘main’ :
/tmp/foo.c:4:1:

expected ‘;’ before '}’ token

Von Neumann redux - The CPU

EXECUTE

CPU

e

Nov Neumann's real face

Image by Hiroshige Goto

RM Corte Block Diagram
Non-Processor Cortex-A57 Processor Core
ILevel 2
o [=—
% = | L1 Instruction Cache Branch Prediction
3 s Lt oy setassociative Bi-mode Predictor
=5 | LB T Indirect Predictor o
32 wipath history g
= 128 bits Global History Buffer s
3 | MicroBTB (saentry) |
o | Instruction Fetch I Branch Torget Buffer I
§ =3 § Retum Stack
2.0 & 12 Staq
o = ol In-Order
3 S Pipeline
= 2 3-way Instruction Decode
L
& gg =1 5 = E
= s >
2|3 g 1 11 J
S (Gm— =]
3 F 32-en i
I = % Loop Baxe Virtual to Physical Register Pool
|4 S S
- a
4 3 CPI4ICP15 - o
3 §§ H Registers [Dispatch States [commit [IE
mg 2 Fo Register Files Issue (8-entry Queue per Issue port) | E
S82=0 o8 = 3
15| | & :
gl = 2
3 [~ @ o {2} o
sEze= 3 [2 gd Igsl I3
4 -3 o
= 2 e @ 3 i B B
S = <
) B
E L 3-12 Stage
oad § Infeger ALY & Out-of-Order
Load TLB[|1 Data Cach . Smﬁ lhiﬂef Pipeline
af che ber cycl ificludes
(B2-entry) 32KB ECC = S i)
(R IR s S
48-bit Virtual Address
44-bit Physical Address
| 128 micro-ops in-flight | Retirement Buffer F -E

The compiler’s view of Von Neumann

e Assumes a safe default
o For Intel chips, assumes a reasonable older version

e The ISA needs to be accurate, everything else is an approximation
o Prefetching

Caching

Scheduling

Instruction reordering

Speculative Execution

Parallelism

o O O O O

Microarchitectures Rule

e FEveryone (including compilers) like to pretend that they don't care
o Butthey do! A lot!

e Simplifies the view for higher level programmers
e Helps build complex abstractions

e But we leave a lot of performance on the table

m Banks care
m Scientists care
m Google, Facebook and Government Spy Agencies care

What is a microarchitecture?

e The real logic underneath
o Does a mov of 128 bytes work as is or break up into 2 instructions moving 64 bytes each?
e Decides what compute units go in and how they interact

o IBM Power 7 had 4 floating point units while the average Intel processor has just 1
o Separate load and store units to deal with memory reads or writes

e In order vs out of order
o Dol wantto be Spectre/Meltdown capable?!

e Prefetching Behaviour
o Hardware vs Software prefetching
o When user issues a prefetch instruction, do | prefetch or just snigger at their naivety?

e Branch prediction logic
e Register banks (hardware file vs virtual) and Register Renaming

A 30 sec view of a compiler

A 60 sec view of a compiler

Intermediate
Representation!

A 90 sec view of gcc

A 90 sec view of llvm

A 120 sec view of a compiler

Intermediate
Representation

Tweak Optimization pass
Behaviour to suit the

microarchitecture. the microarchitecture

Tweak Translation of code to suit>

A 120 sec view of gcc

gcc/config/<arch>/*.c

gcc/config/<arch>/*.md >

A 120 sec view of llvm

lib/Target/<arch>/*.cpp

gcc/config/<arch>/*.td >

Gcec Example

e Add Instruction patterns in *.md files
o Conditional instructions like cmov vs branch and set
o Specific register patterns that may influence a CPU feature
e Add a pipeline description
o Model the CPU pipeline to influence the scheduler pass (gcc/haifa-sched.c)
e Add tuning structures
o Specify relative costs of operations (e.g. choosing between addressing modes)
e Add custom passes
o Do funky things that affect only this microarchitecture

But wait! There’s glibc too!

e String functions rule!
e Can double in performance in some cases

e Hand coded assembly implementations
o Careful selection and ordering of instructions
o Careful use of register numbers
e Deployed using ifunc mechanism
o Detect CPU model at runtime
o Patch the function entry point (PLT. Come to the Toolchain BoF to ask about it!)

e Implementations in sysdeps/<arch>/multiarch/*.S

That’s All Folks!

Come to the Toolchain BoF!
Get this slide deck at: hitps://siddhesh.in/mcpu.pdf

@siddhesh_p siddhesh@gotplt.org

mailto:siddhesh@gotplt.org
https://twitter.com/siddhesh_p
https://siddhesh.in/mcpu.pdf

