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What are we doing here?

Appreciate CPU architecture

Really Appreciate what goes into CPUs
How compilers deal with the CPU

Plug my other talks!



Who am I?

e | hack on gcc and glibc

e |lead ateam that hacks on gcc and glibc...
o ...and does microarchitecture optimizations

e | work at Linaro



Von Neumann redux

INPUT

CPU

CONTROL UNIT

int main (void)
{

return 0

}

INTEGER UNIT

OUTPUT

FLOATING POINT UNIT

/tmp/foo.c: In function
‘main’ :
/tmp/foo.c:4:1:

expected ‘;’ before '}’ token




Von Neumann redux - The CPU

EXECUTE

CPU

e




Nov Neumann's real face
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The compiler’s view of Von Neumann

e Assumes a safe default
o For Intel chips, assumes a reasonable older version

e The ISA needs to be accurate, everything else is an approximation
o  Prefetching

Caching

Scheduling

Instruction reordering

Speculative Execution

Parallelism

o O O O O



Microarchitectures Rule

e FEveryone (including compilers) like to pretend that they don't care
o Butthey do! A lot!

e Simplifies the view for higher level programmers
e Helps build complex abstractions

e But we leave a lot of performance on the table

m Banks care
m Scientists care
m Google, Facebook and Government Spy Agencies care



What is a microarchitecture?

e The real logic underneath
o Does a mov of 128 bytes work as is or break up into 2 instructions moving 64 bytes each?
e Decides what compute units go in and how they interact

o IBM Power 7 had 4 floating point units while the average Intel processor has just 1
o Separate load and store units to deal with memory reads or writes

e In order vs out of order
o Dol wantto be Spectre/Meltdown capable?!

e Prefetching Behaviour
o Hardware vs Software prefetching
o  When user issues a prefetch instruction, do | prefetch or just snigger at their naivety?

e Branch prediction logic
e Register banks (hardware file vs virtual) and Register Renaming



A 30 sec view of a compiler




A 60 sec view of a compiler

Intermediate
Representation!



A 90 sec view of gcc



A 90 sec view of llvm



A 120 sec view of a compiler

Intermediate
Representation

Tweak Optimization pass
Behaviour to suit the

microarchitecture. the microarchitecture

Tweak Translation of code to suit>




A 120 sec view of gcc

gcc/config/<arch>/*.c

gcc/config/<arch>/*.md >




A 120 sec view of llvm

lib/Target/<arch>/*.cpp

gcc/config/<arch>/*.td >




Gcec Example

e Add Instruction patterns in *.md files
o  Conditional instructions like cmov vs branch and set
o Specific register patterns that may influence a CPU feature
e Add a pipeline description
o Model the CPU pipeline to influence the scheduler pass (gcc/haifa-sched.c)
e Add tuning structures
o  Specify relative costs of operations (e.g. choosing between addressing modes)
e Add custom passes
o Do funky things that affect only this microarchitecture



But wait! There’s glibc too!

e String functions rule!
e Can double in performance in some cases

e Hand coded assembly implementations
o  Careful selection and ordering of instructions
o  Careful use of register numbers
e Deployed using ifunc mechanism
o Detect CPU model at runtime
o Patch the function entry point (PLT. Come to the Toolchain BoF to ask about it!)

e Implementations in sysdeps/<arch>/multiarch/*.S



That’s All Folks!

Come to the Toolchain BoF!
Get this slide deck at: hitps://siddhesh.in/mcpu.pdf

@siddhesh_p siddhesh@gotplt.org
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